Live
- Stimulating NREM sleep can boost cognitive function, memory
- EO releases TTD employees’ cricket team Jersey
- Priyanka Gandhi leads by 90,000 votes in Wayanad, Cong edges out BJP in Palakkad Assembly seat
- US CDC confirms H5N1 bird flu infection in child in California
- Dispose dump yard garbage in 3 months: TTD EO
- Gold rates in Vijayawada today surges, check the rates on 23 November, 2024
- Gold rates in Hyderabad today surges, check the rates on 23 November, 2024
- Punjab bypolls: Counting of votes begins for four Assembly seats
- Kakani lodges complaint against TDP
- Priyanka Gandhi leads in Wayanad, BJP ahead in Palakkad Assembly seat
Just In
This device can manipulate brain cells using smartphone
Scientists have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone. The device, described in the journal Nature Biomedical Engineering, can speed up efforts to uncover brain diseases such as Parkinson's, Alzheimer's, addiction, depression, and pain.
Scientists have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone. The device, described in the journal Nature Biomedical Engineering, can speed up efforts to uncover brain diseases such as Parkinson's, Alzheimer's, addiction, depression, and pain. The device, using Lego-like replaceable drug cartridges and powerful bluetooth low-energy, can target specific neurons of interest using drug and light for prolonged periods.
"The wireless neural device enables chronic chemical and optical neuromodulation that has never been achieved before," said Raza Qazi, a researcher with the Korea Advanced Institute of Science and Technology (KAIST) and University of Colorado Boulder. He said this technology significantly overshadows conventional methods used by neuroscientists, which usually involve rigid metal tubes and optical fibres to deliver drugs and light.
Apart from limiting the subject's movement due to the physical connections with bulky equipment, their relatively rigid structure causes lesion in soft brain tissue over time, therefore making them not suitable for long-term implantation. Though some efforts have been put to partly mitigate adverse tissue response by incorporating soft probes and wireless platforms, the previous solutions were limited by their inability to deliver drugs for long periods of time as well as their bulky and complex control setups. To achieve chronic wireless drug delivery, scientists had to solve the critical challenge of exhaustion and evaporation of drugs.
Researchers from the Korea Advanced Institute of Science and Technology and the University of Washington in Seattle collaborated to invent a neural device with a replaceable drug cartridge, which could allow neuroscientists to study the same brain circuits for several months without worrying about running out of drugs. These 'plug-n-play' drug cartridges were assembled into a brain implant for mice with a soft and ultrathin probe -- with thickness of a human hair --which consisted of microfluidic channels and tiny LEDs, for unlimited drug doses and light delivery.
Controlled with an elegant and simple user interface on a smartphone, neuroscientists can easily trigger any specific combination or precise sequencing of light and drug deliveries in any implanted target animal without need to be physically inside the laboratory.
© 2024 Hyderabad Media House Limited/The Hans India. All rights reserved. Powered by hocalwire.com